

Do Tax Cuts Increase Consumption?

An Experimental Test of Ricardian Equivalence (FU Berlin Discussion Paper No. 2014/16)

Theory

A dynamic stochastic optimization model for 25 periods

- Induced time-separable CARA utility: $u(c_t) = 338[1 e^{-0.0125c_t}]$
- Dynamic optimization

•
$$\max_{c_t} E_t \sum_{j=0}^{25-t} u(c_{t+j})$$

- Transition equation: s. t. $c_t + a_{t+1} + \tau_t = y_t + a_t$
- Stochastic exogenous i.i.d. (labor) income y_t 120 or 250 Taler with equal probability in each period; standard deviation $\sigma_{\rm v}=65$
- Initial/finite lifetime condition: $a_1 = 1000$ Taler, $a_{26} = 0$ Taler
- Constant sum of Taxes condition: $\sum_{t=1}^{25} \tau_t = 3000$ Taler

Definition: Ricardian Equivalence. Suppose the sum of all tax payments is certain and constant over the life-cycle, then the timing and the size of tax payments is irrelevant for optimal consumption.

Findings

- Consumers do not behave as predicted by expected utility theory
 - overreact to income changes
 - difficulties in assessing magnitudes
 - social norm that deems parsimony as a good thing
- Over the life cycle, a tax relief increases consumption on average by about 22% of the tax rebate
- A tax increase causes consumption to decrease by about 30% of the tax increase
- In our experiment, we find the behavior of about 62% of our subjects to be inconsistent with the Ricardian proposition
- Taxation influences consumption beyond the current period

Experimental Design

Control:

Taxes are 25 times 120, no tax cuts, no increases

In the following two treatments: Tax cuts in early periods, tax increases after period 16 There are 3 tax cuts and 3 tax increases; each of them are always 120 Taler Subjects are informed that the sum of taxes equals 3000 Taler over one life cycle **Treatment Ricardian 1:**

Tax cuts (increases) occur only if low (high) income shock

Net income is pre-smoothed

Treatment Ricardian 2: Tax cuts (increases) occur only if high (low) income shock

Net income is more volatile

Optimal consumption is the same across all treatments

Subjects play either the Control, Ricardian 1 or Ricardian 2 (random selection, about 43 subjects per treatment)

Structural Panel Regression

- Optimal consumption is a linear function in each period
- We weight income \tilde{y} , assets \tilde{a} , taxes to be paid \tilde{T} , precautionary saving $\tilde{\Gamma}(\theta \sigma_{v})$, permanent income \tilde{y}_p such that theory predicts coefficients of these variables to be equal to one
- Theory predicts coefficients on tax dummies and lagged tax dummies to be zero
- 1. Using Fixed Effects all weighted variables are significantly different from one
- 2. Tax cut dummies are positive and significantly different from zero
- 3. Tax increase dummies are negative and significantly different from zero
- 4. Some lagged tax dummies are statistically different from zero

	Ordinary Leas	Ordinary Least Squares		Fixed Effects	
$ ilde{y}$	1.158***	(4.42)	1.210***	(5.78)	
\tilde{a}	0.700***	(-24.84)	0.891***	(-4.50)	
$ ilde{\mathcal{T}}$	0.339***	(-14.18)	0.467***	(-11.31)	
$ ilde{\Gamma}(heta\sigma_y)$	1.598	(0.93)	2.006*	(1.69)	
$(T-t)\widetilde{y}_p$	1.145*	(1.83)	1.277***	(3.81)	
Tax cut dummy	19.100***	(5.10)	19.780***	(5.27)	
Tax increase dummy	-25.660***	(-9.52)	-25.930***	(-9.57)	
Lagged tax dummies	YES		YES		
Other controls	YES		YES		
t-statistics for coefficient equal to 1, *** p<0.01,** p<0.05,* p<0.10					

t-statistics for coefficient equal to 0, *** p<0.01, ** p<0.05, * p<0.10

Nonparametric Analysis

Mean aggregate absolute deviation

$$m_1 = \sum_{t=1}^{T} |c_t^*(w_t) - c_t|$$

Mean utility loss

$$m_2 = \sum_{t=1}^{T} [u(c_t^*(w_t^*)) - u(c_t)]$$

Literature

Caballero, R. J. (1990): "Consumption Puzzles and Precautionary Savings," Journal of Monetary Economics, 25(1), 113–136.

Caballero, R. J. (1991): "Earnings Uncertainty and Aggregate Wealth Accumulation," The American Economic Review, 81(4), 859–871.

Carbone, E., and J. D. Hey (2004): "The Effect of Unemployment on Consumption: An Experimental Analysis," The Economic Journal, 114(497), 660–683.

Fischbacher, U. (2007): "z-Tree: Zurich Toolbox for Ready-Made Economic Experiments," Experimental Economics, 10(2), 171–178.

Seater, J. J. (1993): "Ricardian Equivalence," Journal of Economic Literature, 31(1), 142–190. Shapiro, M. D., and J. Slemrod (1995): "Consumer Response to the Timing of Income: Evidence from a Change in Tax Withholding," American Economic Review, 85(1), 274–83.

- T. Meissner*, D. Rostam-Afschar²³
- Technische Universitaet Berlin, 2 Freie Universitaet Berlin, 3 DIW Berlin